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Abstract. The structure of an isolated single vortex and the vortex lattice, and the magnet-
ization in a d-wave superconductor are investigated within a phenomenological Ginzburg–Landau
(GL) model including the mixture of the dx2−y2-wave and dxy -wave symmetries. The isolated
single-vortex structure in a weak magnetic field is studied both numerically and asymptotically.
Near the upper critical fieldHc2, the vortex lattice structure and the magnetization are calculated
analytically.

1. Introduction

Since the discovery of the high-temperature superconductors (HTSCs), a great number of
experimental and theoretical investigations have been carried out to identify the symmetry
of the superconducting pairing state. Although there still remain controversies, it is believed
that the dx2−y2-wave symmetry is most probable in HTSCs; e.g. a series of strong pieces of
evidence have been provided by phase-sensitive experiments [1].

In recent years, the structure of vortices in a dx2−y2 superconductor has been of great
interest. It was expected that the structure of d-wave vortices might be very different from
that of s-wave vortices. And connected with the vortex structure, the question of order
parameter symmetry admixture arose.

From the standpoint of the spontaneous symmetry breaking, in a bulk with a perfect
crystal symmetry, the order parameter transforms according to an irreducible representation
[2] of the crystallographic point group [3–5]. Thus in a crystal of tetragonal (D4) symmetry,
only one symmetry state (e.g. dx2−y2-wave symmetry) is allowed. However, near interfaces,
surfaces or impurities, the crystalline symmetry is not perfect, and the dx2−y2-wave order
parameter fluctuates spatially and hence induces components of other symmetry. This is
also the case in the presence of vortices, to which we will confine ourselves in this work.

Soininen et al [6], starting from a simple microscopic model Hamiltonian and its
Bogoliubov–de Gennes equation, found a substantial admixture of an induced s wave and
the dominant dx2−y2 wave. On the basis of that work, Berlinskyet al [7] and Franzet al [8]
investigated the structure of d-wave vortices using the Ginzburg–Landau (GL) theory. Ren
et al [9] derived the GL equation microscopically from the Gorkov equation of a continuum
mean-field model, and it was studied in detail by Xuet al [10, 11] for the d-wave vortex
structures. Joynt [12] also included the d–s mixing term in their phenomenological GL
model, on the basis of symmetry arguments. Very recently, Maki and Béal-Monod [13] and
Won and Maki [14] also incorporated d–s mixture. They used an interaction potential with
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the s-channel repulsive Coulomb interaction in their weak-coupling model. In most of the
studies mentioned above, the investigators observed that the s-wave component induced near
the vortex core causes the d-wave component to have fourfold anisotropy [7, 8, 10, 11], and
that the vortices are arranged in an oblique lattice instead of a triangular one [7, 8, 11, 14].

Recently, the possibility of admixture of dx2−y2 waves and dxy waves was also suggested.
Koyama and Tachiki [15] took into account the internal orbital motion of the pairing
electrons in their linearized Gorkov-type gap equation nearTc. They found that the
dominant dx2−y2-wave symmetry was mixed with dxy-wave symmetry, instead of the s-wave
symmetry. The coupling of the two d-wave components led to a significant paramagnetic
effect and to strong enhancement of the upper critical field at lower temperatures, which
fits the experimental results on the overdoped cuprate superconductors Bi2Sr2CuOy and
Tl2Ba2CuO6 remarkably well. And Ichiokaet al [16] considered both dx2−y2–s mixing and
dx2−y2–dxy mixing in the framework of the classical Eilenberger equations. They studied the
isolated single-vortex structures and found that the amplitude of the dxy-wave component
has the shape of an octofoil.

As described above, for the case of d–s mixture, the single-vortex and/or vortex lattice
structure have been extensively studied [7, 8, 14], but this is not so for the case of dx2−y2–
dxy mixture. In this paper, we present analogous studies based on the GL theory which
include the mixing of dx2−y2 waves and dxy waves, assuming dx2−y2-wave symmetry of the
superconducting ground state.

2. GL theory for a d-wave superconductor

We start with the GL free-energy functional proposed by Koyama and Tachiki:

G(H) =
∫

dx

{
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where the order parameter9+ (9−) corresponds to the dx2−y2-wave (dxy-wave) symmetry.
As we previously assumed, in the Meissner state, the only non-vanishing component isψ+,
andα+(T ) < 0 at T < Tc. Other coefficients are assumed to be positive and independent
of the temperature.

In passing, we make a couple of remarks. In equation (1) we included the coupling
term ∼(9∗2

+ 92
− + HC), which was omitted in the model originally proposed by Koyama

and Tachiki [15, 17]. This term is necessary in order to get the most general (up to the
fourth order) free-energy functional from symmetry considerations [5]. The mixing term
∼(9∗

+9− + HC)Bz to quadratic order gives rise to a paramagnetic current [18]. As we
will see below, it dominates other mixing terms and significantly affects the mixed-state
properties of d-wave superconductors.

In the mean-field approximation, neglecting thermal fluctuation effects, physical
properties are described by the corresponding GL equations. It is convenient to introduce
dimensionless quantities by adopting as the fundamental length scale the GL coherence
length ξ+ of 9+ (see table 1). In this case, the GL equations and Maxwell equations are
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Table 1. Characteristic lengths, scales of physical quantities, and phenomenological parameters
in the GL theory in question.

Characteristic lengths ξ2
+ = h̄2

4m+|α+| , ξ2
− = h̄2

4m−α−
, λ2

+ = m+c2

8πe2|90|2
Characteristic fielda H 0

c2 = φ0/2πξ2+

Fundamental parameters 92
0 = |α+|/β+, 80/2π = h̄c/2e, κ = λ+/ξ+

Auxiliary parameters 4 = ξ2+/ξ2−, ϒ = m−β−/m+β+, µ = m−/m+,
ν± = γpm±c/eh̄, ν2

p = ν+ν−,
χ+ = βX/β, χ− = µχ+
ζ+ = βY /β, ζ− = µζ+

Reduced units 9±/90 = ψ±, T/Tc → T , r/ξ+ → r,
B/H 0

c2 → B, A/ξ+H 0
c2 → A, J/(cH 0

c2/4πξ+) → J

a Here H 0
c2 is not the true upper critical field. The upper critical field can be substantially

enhanced in this model.

written as

52ψ+ − ψ+ + |ψ+|2ψ+ + χ+|ψ−|2ψ+ + ζ+ψ∗
+ψ2

− − ν+Bzψ− = 0 (2)

52ψ− + 4ψ− + ϒ |ψ−|2ψ− + χ−|ψ+|2ψ− + ζ−ψ∗
−ψ2

+ − ν−Bzψ+ = 0 (3)

κ2J = −1

2
(ψ∗

+Πψ+ + HC) − 1

2
µ−1(ψ∗

−Πψ− + HC) + 1

2
ν+∇ × (ψ∗

+ψ− + HC)ẑ (4)

where∇ × ∇ × A = J andΠ = (−i∇ + A), and other parameters are defined in table 1.
In equation (4), the last term is the paramagnetic current contribution.

3. Isolated single-vortex structure

Consider an isolated single vortex near the lower critical fieldHc1 [19]. For the problem of
an isolated single vortex, it would be convenient to decompose the order parameter into the
form ψ± = f±e+iϕ± . Since the dxy-wave component is induced through the direct coupling
to the magnetic field, in the low field nearHc1 its amplitude is expected to be very small
compared with the dx2−y2-wave component. Thus, just for intuitive understanding, for the
moment we neglect the effect of the coupling in the fourth order (χ± ' 0, ζ± ' 0). This
effect will be considered below.

Let us first look at the phase distributions associated with the vortex. It is obvious from
the rotational symmetry of the GL equations that the phases should haveϕ(r, θ)± = −θ up
to an additive constant [20], which we take to be zero; the two d-wave components have
the same winding. Thus, the differential equations are rewritten, in terms off± only, as

52f+ − f+ + f 3
+ − ν+Bf− = 0 (5)

52f− + 4f− + ϒf 3
− − ν−Bf+ = 0 (6)

κ2J = −(f 2
+ + µ−1f 2

−)(−1/r + A)θ̂ + ν+∇ × (f+f−)ẑ (7)

where

52 = − d2

dr2
− 1

r

d

dr
+

(
−1

r
+ A

)2

and whereA = A(r)θ̂, B = B(r)ẑ, andJ = J (r)θ̂.
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Second, near the vortex centre (r → 0), B(r) andf±(r) have asymptotic behaviour of
the following form:

B(r) = B0 + B2r
2 + O[r4] (8)

f+(r) = C0r(1 + C2r
2 + O[r4]) (9)

f−(r) = D0r(1 + O[r4]) (10)

where [21]
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8
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[
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p
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]
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2

C2
0

κ2

[
1 − 2ν2

p

B0

4 − B0
+ ν2

p

(
B0

4 − B0

)2
]

. (13)

Note that sinceB0 ∼ 2/κ2, in the extreme type-II superconductors (κ � 1) the asymptotic
behaviours ofB(r) andf+(r) deviate very little from those of the conventional s-wave GL
theory (C2 ' −(1 + B0)/8, B2 ' −C2

0/2κ2).
Next, consider the region far from the vortex centre (r � κ). Assuming the extreme

type-II superconductor (κ � 1), we can treatf+ = 1 and neglect|∇2f |− ∼ f−/κ2 � f−.
Then by taking the curl of equation (7) we get the usual London equation:

κ2∇ × ∇ × B + B = 2πδ2(r)ẑ (14)

and from equation (6)

f+(r) ' ν−
4

B(r) ∼
√

κ/r e−r/κ (r � κ). (15)

Thus, far outside the core, only the pure dx2−y2-wave component remains.
Now we discuss the effect of the mixing terms in the fourth order, i.e. with finiteχ±

andζ±. In general, due to the coupling of the formψ∗2
+ ψ2

− + HC the GL equations do not
have spherical symmetry. However, with the assumption of a small dxy-wave component,
we can apply a partial-wave expansion forψ−:

ψ− =
∑

n

f
(n)
− (r)einθ . (16)

It is straightforward to show that the only non-vanishing component is that ofn = 1, and
that the asymptotic results given above are unchanged.

We also provide the numerical results for the distribution of the order parameter and
the magnetic induction in figure 1. As shown in figure 1(a), the magnitudef−(r) for the
dxy-wave component increases as the dx2−y2–dxy coupling strengthν+ (ν−) increases and as
the temperatureT decreases. However,f−(r) is so small that its effect onf+(r) andB(r)

is negligible; the isolated single-vortex structure of this model is very similar to that of the
conventional s-wave GL theory.

4. The vortex lattice and magnetization near the upper critical field

In the vicinity of the upper critical fieldHc2, the magnitudes of the order parameters are
small, and thus the non-linear terms in the GL equations (2) and (3) are negligible. The
magnetic fields are also assumed to be constant over the whole space since the inter-vortex
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Figure 1. Distributions of the magnitudes of the order parameter and the magnetic induction
associated with an isolated single vortex, for different values ofT and ν+: T = 0.1, 0.9 and
ν+ = 0.1, 0.9. The other parameters are set asµ = 1.0, 4(0) = 1.0, ϒ = 1.0, χ+ = 0.8.

spacing is much less than the penetration depthλ+. Then the GL equations are reduced to
a linearized form:

(52 − 1)ψ+ − ν+Bzψ− = 0 (17)

(52 + 4)ψ− − ν−Bzψ+ = 0. (18)

Each of the solutionsψL± is just a linear combination of the wave functions in the lowest
Landau level, which is infinitely degenerate, and determined so as to minimize the GL free
energy.

We minimize the free energy by generalizing Abrikosov’s procedures [22, 23]. In these
procedures, the two components of the order parameter satisfy

ψL−
ψL+

= 1

ν+

Hc2 − 1

Hc2
(19)
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and the requirement that the current contribution is given by

κ2JL = −1

2
∇ ×

{
|ψL+|2 + µ−1|ψL−|2 − ν+(ψ∗

L+ψL− + HC)
}
ẑ. (20)

Then the magnetization [24] and the GL free energy are given by

4πM = − Hc2 − H

(2κ2
eff − 1)βA

(21)

Gs(H) = Gn(Hc2) + 2κ2

[
(H 2

c2 − H 2) − (Hc2 − H)2

(2κ2
eff − 1)βA

]
(22)

whereβA ≡ 〈f 4
+〉/〈f 2

+〉2 is a still undetermined parameter, andκ2
eff(T ) = κ2G(T )/F 2(T )

with

R(T ) = 1

ν+

Hc2(T ) − 1

Hc2(T )

F (T ) = 1 − 2ν+R + µ−1R2

G(T ) = 1 + 2(χ+ + ζ+)R2 + µ−1ϒR4.

The Abrikosov parameterβA is concerned in the vortex lattice structure and is determined
by minimizing the GL free energy. SinceψL+ has the same form as the s-wave
Abrikosov solution, it is obvious that the free energy is minimized for the triangular vortex
lattice (βA = 1.16) [25]. The magnetization in equation (22) shows the usual form of
the conventional s-wave GL theory [22, 23], but the slope 4π dM/dH depends on the
temperature.

5. Discussion

There has been no direct observation of the single-vortex structure in a HTSC, while Keimer
et al [26] and Maggio-Aprileet al [27] observed oblique lattices in their SANS and STM
experiments on YBCO compounds, respectively. Their result of an oblique lattice is not
consistent with our result of a triangular lattice. Both the single-vortex structure and the
vortex lattice structure are also different from theoretical predictions based on the dx2−y2–s
admixture scenario [7, 8, 10, 11, 14].

The single-vortex structure can have a significant influence on the structure of the vortex
lattice in many-vortex problems. It is quite interesting to note that the fourfold symmetry
of a d–s admixed vortex is an implication of the mixed-gradient coupling in the model. In
our model, there is no mixed-gradient term up to quadratic order. Very recently, Ichioka
et al [16] argued that a non-local correction is required and that the associated GL theory
should include the fourth-order mixed-gradient term. They observed that the dx2−y2-wave
component has a four-lobe shape and that the dxy-wave component has the shape of an
octofoil. Although in this present paper we put emphasis on the effect of mixing through
the direct coupling to the magnetic field, the result of Ichiokaet al strongly suggests that
dx2−y2–dxy admixture can lead to an oblique vortex lattice. Furthermore, even in the present
GL model, for the intermediate-field regime away from the extreme regions near toHc1

or Hc2, the order parameter distribution is not spherically symmetric. Therefore further
study is required for that region, because the non-spherical symmetry of the supercurrent
distribution around a vortex is not compatible with the triangular lattice symmetry.

The strong temperature dependence ofκeff(T ) in equation (22) (see figure 2) is
reminiscent of that ofκ2(T ) found in the microscopic consideration of conventional
superconductors by Maki and Tsuzuki [28] and Eilenberger [29]. Roughly speaking,
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Figure 2. The temperature dependence ofκ2
eff for three different values ofνp . The other

parameters are set asµ = 1.0, 4(0) = 1.0, ϒ = 1.0, χ+ = 0.8.

the difference betweenκ2(T ) and κ for that case was due to the non-locality of the
electromagnetic response of the superconductors. In our case, the strongT -dependence
of κeff(T ) has an interesting interpretation. In contrast to the case of the low-field limit,ψ−
is of the order ofψ+ at high fields (H ∼ Hc2) and low temperatures forνp ∼ 1, and the
associated paramagnetic current significantly affects the magnetization curve 4πM(H) in
the low-temperature region. Several experiments reported a strong temperature dependence
of the slope 4π dM/dH nearHc2(T ) in HTSCs [15].

6. Conclusions

We have investigated a GL theory for vortex structures and magnetization in a d-
wave superconductor. In the GL theory, we assumed the dx2−y2-wave symmetry of the
superconducting ground state, and the admixture of dx2−y2-wave symmetry and dxy-wave
symmetry in the presence of the vortices. The structure of an isolated single vortex
was studied asymptotically and numerically in the low-field region (H ∼ Hc1). The
isolated single vortex is similar to the conventional s-wave vortex, and has an almost
spherically symmetric supercurrent distribution around it. The vortex lattice structure and
magnetization were studied analytically at high fields near the upper critical fieldHc2. The
vortices are arranged in a triangular lattice, and the magnetization curve 4πM(H) shows
a strong temperature dependence forνp ∼ 1 due to the paramagnetic current effect. Some
physical implications of the results were discussed. The results were also compared with
the experimental observations and with those of the d–s scenario. It was recognized that
further study in the intermediate-field region would be valuable.
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